0 - Item

You have no items in your shopping cart.

Subtotal: $0.00

Orbital and Reciprocating Water Baths

Orbital and Reciprocating Water Baths

More Views


Price as configured: $0.00

Quick Overview

290400 & 290400-2
Switch from orbital to reciprocating mode by simply reversing the tray.

* Required Fields

Price as configured: $0.00


This Shaking Water Bath with Orbital and Reciprocating shaking is designed for a wide range of temperature-controlled shaking protocols. It features a high quality, robust design with a unique magnetically coupled shaking mechanism for maximum reliability, consistency and quiet operation.

This unique shaking mechanism allows for both orbital and linear shaking in one product by simply changing the orientation of the shaking tray from one mode to the other.

Additional features include a PID microprocessor temperature and speed controller, a digital timer capable of 99 hours and 59 minutes as well as a user settable over temperature safety cut-out. This unit is supplied with a polycarbonate lid.

  • Switch from orbital to reciprocating mode by simply reversing the tray.
  • 3 Point factory programmed temperature calibration throughout temperature range.
  • PID Controller for easy temperature selection, rapid heat up and excellent stability + 0.2°C.
  • Programmable timer up to 99 hrs, 59 min – Bath stops heating when timed operation is completed.
  • Adjustable speed control from 20-200 RPM (in 1 RPM increments).
  • Convenient drain port with quick disconnect allows for easy cleaning of the bath.
  • Choose from a variety of trays to maximize your versatility.
  • Supplied with a polycarbonate lid
  • 2 year manufacturer’s factory warranty.


  • Northern and Southern hybridizations
  • De-staining of gels
  • Incubation of cells or bacterial cultures
  • Wash processes


Shete, H;Sable, S;Tidke, P;Selkar, N;Pawar, Y;Chakraborty, A;De, A;Vanage, G;Patravale, V;. "Mono-guanidine heterolipid based SMEDDS: A promising tool for cytosolic delivery of antineoplastics."Biomaterials. 57 (2015): 116-32. Web. <http://www.sciencedirect.com/science/article/pii/S014296121500318X>

Patel, P;Pol, A;More, S;Kalaria, DR;Kalia, YN;Patravale, VB;. "Colloidal soft nanocarrier for transdermal delivery of dopamine agonist: ex vivo and in vivo evaluation." J Biomed Nanotechnol. 10 (2014): 3291-303. Web. <http://www.ncbi.nlm.nih.gov/pubmed/26000388>

Borhade, V;Pathak, S;Sharma, S;Patravale, V;. "Formulation and characterization of atovaquone nanosuspension for improved oral delivery in the treatment of malaria." Nanomedicine (Lond). 9 (2014): 649-66. Web. <https://www.futuremedicine.com/doi/full/10.2217/nnm.13.61>

Mendez-Montealvo, G;Wang, YJ;Campbell, M;. "Thermal and rheological properties of granular waxy maize mutant starches after ?-amylase modification." Carbohydrate polymers. 83 (2011): 1106-1111. Web. <http://www.sciencedirect.com/science/article/pii/S0144861710007411>

Mendez-Montealvo, G;Wang, YJ;Campbell, M;. "Thermal and rheological properties of granular waxy maize mutant starches after isoamylase modification." Carbohydrate polymers. 83 (2011): 2011-2015. Web. <http://www.sciencedirect.com/science/article/pii/S0144861710008994>

Borhade, V;Pathak, S;Sharma, S;Patravale, V;. "Clotrimazole nanoemulsion for malaria chemotherapy. Part I: preformulation studies, formulation design and physicochemical evaluation." Int J Pharm. 431 (2012): 138-48. Web. <http://www.uff.br/ppgcaps/Textos/7-Clotrimazole%20nanoemulsion%20for%20malaria%20chemotherapyPart%20I%20Preformulation.pdf>

Chilakapati, J;Korrapati, MC;Hill, RA;Warbritton, A;Latendresse, JR;Mehendale, HM;. "Toxicokinetics and toxicity of thioacetamide sulfoxide: a metabolite of thioacetamide." Toxicology. 230 (2007): 105-16. Web. <http://www.sciencedirect.com/science/article/pii/S0300483X06006470>

Chilakapati, J;Korrapati, MC;Shankar, K;Hill, RA;Warbritton, A;Latendresse, JR;Mehendale, HM;. "Role of CYP2E1 and saturation kinetics in the bioactivation of thioacetamide: Effects of diet restriction and phenobarbital." Toxicol. Appl. Pharmacol.. 219 (2007): 72-84. Web. <http://www.sciencedirect.com/science/article/pii/S0041008X06004613>

Flores, FP;Singh, RK;Kerr, WL;Pegg, RB;Kong, F;. "Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion." Food Chem. 153 (2014): 272-8. Web. <http://www.sciencedirect.com/science/article/pii/S0308814613019316>

Dashtban, M;Gilbert, A;Fatehi, P;. "Separation of lignocelluloses from spent liquor of NSSC pulping process via adsorption." J. Environ. Manage.. 136 (2014): 62-7. Web. <https://www.researchgate.net/profile/Mehdi_Dashtban/publication/260314548_Separation_of_lignocelluloses_from_spent_liquor_of_NSSC_pulping_process_via_adsorption/links/00b7d53bed710cf4b2000000.pdf>

Flores, FP;Singh, RK;Kerr, WL;Pegg, RB;Kong, F;. "Antioxidant and enzyme inhibitory activities of blueberry anthocyanins prepared using different solvents." J. Agric. Food Chem.. 61 (2013): 4441-7. Web. <http://www.icb.osaka-u.ac.jp/AnnuRep/AnnuRep35/477-483.pdf>

Bouhired, SM;Crüsemann, M;Almeida, C;Weber, T;Piel, J;Schäberle, TF;König, GM;. "Biosynthesis of phenylnannolone A, a multidrug resistance reversal agent from the halotolerant myxobacterium Nannocystis pusilla B150.." Chembiochem. 15 (2014): 757-65. Web. <http://hss.ulb.uni-bonn.de/2013/3127/3127.pdf>

Cao, Y;Zhao, J;Xiong, YL;. "Coomassie Brilliant Blue-binding: a simple and effective method for the determination of water-insoluble protein surface hydrophobicity." Analytical Methods. 8 (2016): 790-795. Web. <http://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay02630j>

Sumanasinghe, RD;Haslauer, CM;Pourdeyhimi, B;Loboa, EG;. "Melt spun microporous fibers using poly (lactic acid) and sulfonated copolyester blends for tissue engineering applications." BLENDS FOR TISSUE ENGINEERING APPLICATIONS. 117 (2010): 3350?3361. Web. <https://www.researchgate.net/profile/Elizabeth_Loboa/publication/230370731_Melt_spun_microporous_fibers_using_poly(lactic_acid)_and_sulfonated_copolyester_blends_for_tissue_engineering_applications/links/560977c008ae840a08d3ace8.pdf>

Loman, AA;Ju, L;. "Purification of arabitol from fermentation broth of Debaryomyces hansenii using glycerol as substrate." Journal of Chemical Technology and Biotechnology. 88 (2013): 1514?1522. Web. <http://onlinelibrary.wiley.com/doi/10.1002/jctb.3995/full>

Pérez, AD;Rodríguez-Barona, S;Fontalvo, J;. "Liquid?Liquid Equilibria for Trioctylamine/1-Dodecanol/Lactic Acid/Water System at 306.1, 310.1 and 316.1 K: Experimental Data and Prediction." J. Chem. Eng. Data. (2016): . Web. <http://pubs.acs.org/doi/full/10.1021/acs.jced.5b00955>

Gite, S;Chogale, M;Patravale, V;. "Development and Validation of a Discriminating Dissolution Method for Atorvastatin Delayed-Release Nanoparticles Using a Flow-Through Cell: A Comparative Study Using USP Apparatus 4 and 1." Dissolution Technologies. (2016): 14. Web. <http://www.dissolutiontech.com/issues/201605/DT201605_A02.pdf>

Couch, RL;Price, JT;Fatehi, P;. "Production of Flocculant from Thermomechanical Pulping Lignin via Nitric Acid Treatment." ACS Sustainable Chemistry & Engineering. 4 (2016): 1954?1962. Web. <http://pubs.acs.org/doi/full/10.1021/acssuschemeng.5b01129>


Catalog Number:290400, 290400-2
Temperature Range: Ambient +5º to 99ºC
Stability: +0.2ºC
Speed Range: 20 to 200 rpm
Orbital Radius: 10 mm
Linear Stroke Length: 20 mm
Temperature Setting/display: Digital/LED
Temperature Display Resolution: 0.1°C
Shaking Speed Display Resolution: 1 rpm
Timer: Timer “ON”, timer is settable up to 99hrs. 59min. or “OFF” mode to operate bath without timer.
Overall Dimensions W x L x H: 13" x 22" x 14"
33 cm x 55.9 cm 35.6 cm
Shipping Weight: 44.5 lbs. (20.2 kgs)
Electrical: 290400 115 Vac, 50/60 Hz**
290400-2 230 Vac, 50/60 Hz (CE)***
*230V units are supplied with continental European plug.


View FileWater Baths Brochure    Size: (1.92 MB)
View FileOrbital / Reciprocating Water Bath Manual    Size: (67.65 KB)